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Abstract

When it comes to complex machine learning models, commonly referred to as black boxes, understanding the underlying
decision making process is crucial for domains such as healthcare and financial services, as well as when they are used
in connection with safety critical systems such as autonomous vehicles. As a result, interest in explainable artificial
intelligence (xAI) tools and techniques has increased in recent years. However, the user experience (UX) effectiveness
of existing xAI frameworks, especially concerning algorithms that work with data as opposed to images, is still an
open research question. In order to address this gap, we examine the UX effectiveness of the Local Interpretable
Model-Agnostic Explanations (LIME) xAI framework, one of the most popular model agnostic frameworks found in the
literature, with a specific focus on its performance in terms of making tabular models more interpretable. In particular,
we apply several state of the art machine learning algorithms on a tabular dataset, and demonstrate how LIME can
be used to supplement conventional performance assessment methods. Based on this experience, we evaluate the
understandability of the output produced by LIME both via a usability study, involving participants who are not familiar
with LIME, and its overall usability via a custom made assessment framework, called Model Usability Evaluation
(MUsE), which is derived from the International Organisation for Standardisation 9241-11:2018 standard.

Keywords: Machine learning, Explainable Artificial Intelligence, Model Agnostic Explanations, Usability Study, User
Experience

1. Introduction

Since the term was first mentioned in 1956 [1], artifi-
cial intelligence (AI), and especially its subset machine
learning, has steadily made its way into various kinds of
industries and aspects of our lives, like healthcare12, trans-
portation3 and advertisement45. While machine learning
applications are advancing further, the understanding of
how machine learning models work and how decisions
are made is not advancing at the same pace. In some
applications like recommendation systems or predictive
maintenance it may not be necessary to understand the
black box decision making, as long as the models’ predic-
tions are accurate in the majority of cases. However, in
circumstances where human lives are involved, like medi-
cal diagnosis or self-driving cars, the ability to understand
the decision process is essential in order to establish trust
in such systems.
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In this context, Arrieta et al. [2] defines understandabil-
ity, as ”the characteristic of a model to make a human under-
stand its function – how the model works – without any need
for explaining its internal structure or the algorithmic means by
which the model processes data internally.” Efforts made in the
field of Explainable AI (xAI) [3] aim to accomplish just that,
by building and using models that generate transparency
for their users, thus giving a functional understanding of
the model [4]. One approach is to develop powerful and
fully explainable models, such as deep k-nearest neigh-
bours [5] and teaching explanations for decisions [6], with
an explanation being an accurate proxy of the decision
maker, used with the aim to create understandability for
humans [7]. Another approach is to tackle the issue of
model agnostic post modelling interpretability, hence, the
ability to explain the meaning to a person [2], by explain-
ing the output of well established machine learning mod-
els, instead of replacing these models entirely (cf., LIME
by Ribeiro et al. [8], SHAP by Lundberg and Lee [9], and
MAPLE by Plumb et al. [10]).

When it comes to xAI frameworks, the Local Inter-
pretable Model-Agnostic Explanations (LIME) framework
is, with 5832 citations6, one of the predominant tools dis-

6https://bit.ly/3hcv4eS
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cussed in the literature. For instance, one highly cited
publication, by Selvaraju et al. [11] (with 5083 citations),
remarks that the method on assessing trust in models,
proposed by Ribeiro et al. [8], motivated them to use a
similar approach to assess their own model. Another
prominent example, the interpretability SHAP framework,
by Lundberg and Lee [9] (with 3587 citations), bases its
computational method on LIME and also uses LIME as a
benchmark for their performance evaluation.

Another indicator for LIMEs popularity is their activity
on the biggest repository hosting service GitHub78. From
August 2016 to July 2021 the project has been bookmarked
(starred) over 9000 times, has been copied (forked) over 1500
times and has been used by over 1300 GitHub users. 45
researchers and developers have contributed to the project
with over 526 approved commits, with the most recent
update being made in June 2021.9

Although existing publications primarily use LIME
as a benchmarking framework in order to assess their
tools [12, 13, 14], they do not evaluate the effectiveness of
LIME from a usability perspective, hence its explainability.
No extensive assessment of its effectiveness from a user
experience (UX) perspective has been conducted to date,
thus the overarching goal of this work is to close this gap.

Summarizing our contributions, we: (i) demonstrate
how LIME can be used to supplement conventional perfor-
mance assessment methods; (ii) evaluate the understand-
ability of the output produced by LIME via a usability
study; and (iii) propose an assessment framework, which
is derived from the International Organisation for Stan-
dardisation (ISO) 9241-11:2018 standard, that can be used
not only to evaluate the usability of LIME but also other
xAI frameworks. In addition, our code and data are made
available in a GitHub repository10.

The reminder of this article is structured as follows:
Section 2 summarizes the state of the art with respect to
post-modelling interpretability. Section 3 compares the
performance of several machine learning models using
conventional methods. Section 4 illustrates the value LIME
adds when it comes to understating the models output
in comparison to conventional performance assessment
methods. Section 5 evaluates LIME from a usability per-
spective via a user-study and by analyzing the experience
we have had via a self-assessment. Finally, our conclusions
and interesting directions for future work are presented in
Section 6.

2. A comparative analysis of existing work on model ag-
nostic explainablility

Existing work relating to xAI can be grouped into two
distinct categories: (i) the development of fully explainable

7https://github.com/
8https://thenewstack.io/i-dont-git-it-tracking-the-source-

collaboration-market/
9https://github.com/marcotcr/lime

10https://github.com/jdieber/WhyModelWhy

models (cf., [5, 6]), which are interpretable by design, with-
out using another framework, and (ii) the development of
model agnostic explainability frameworks (cf., [8, 9, 10]),
which are used on a model to make it more interpretable.
Considering that model agnostic frameworks can be used
with any machine learning algorithm, in this paper we fo-
cus specifically on the latter. In particular, our integrative
literature review, which is summarised in Table 1, focuses
on comparing and contrasting existing work with respect
to the scope of the interpretability, the type of data the
method is tested with, and the evaluation used to assess
or compare the methods performance.

In terms of the scope of interpretability, a framework
can either be on a global level, meaning it makes different
models comparable with each other, by summarizing their
performance with respect to specific indicators, or on a
local level, giving insight into how a classification in the
case of a single prediction is made. Although the vast
majority of works focus on local interpretability [34, 35,
45, 19, 41, 40, 21, 32, 39, 44, 30, 31, 27, 12, 16, 24, 20, 3,
18, 42, 9, 13, 28, 10, 8, 22, 17, 26, 33, 38, 46, 14, 36, 37],
several can also be used for a global comparison [45, 19,
41, 32, 31, 47, 15, 18, 10, 23, 8, 29, 46]. Only the activation
maximization method [15] and model distillation [29] are
exclusively global. Although each of the papers includes
some demonstration of the method using a specific data
type, the actual data used is very different: twenty-four
methods are applied to tabular data [35, 45, 19, 41, 21, 32,
44, 30, 31, 12, 16, 24, 3, 18, 42, 13, 10, 23, 8, 22, 17, 38, 29, 14],
sixteen are applied to image data [35, 40, 39, 27, 20, 3, 9, 15,
28, 17, 38, 46, 36, 37], and eight are applied to textual data
[34, 3, 42, 8, 22, 26, 33, 38]. Only four publications, Koh
and Liang [3], Ribeiro et al. [8, 22] and Sundararajan et al.
[38] include an application of all three data types.

Concerning the evaluation technique, where an assess-
ment is performed two different methods are used: a base-
line evaluation and a user interview. A baseline evaluation
is a quantitative evaluation technique, where one or more
indicators are used for a comparative assessment. For in-
stance, Plumb et al. [10] uses a self defined causal local
explanation metric to compare their framework to LIME.
In total, eight of the publications apply some sort of base-
line evaluation [34, 21, 12, 20, 42, 13, 10, 14]. The second
evaluation technique is a qualitative method, either a sur-
vey or user interview. Only three publications use this
approach. Lakkaraju et al. [47] and Lundberg and Lee
[9] include a survey in their evaluation and Dhurandhar
et al. [21] ask two professionals to rate a mixed set of in-
terpretability framework outputs given to them. Out of
the ten publications who evaluate their framework, six
draw a comparison to LIME [21, 12, 42, 9, 10, 14], from
which we can assume that LIME constitutes a benchmark
for interpretability frameworks. However, when it comes
to the evaluation of LIME itself, none of the publications
actually use evaluation techniques to assess LIMEs perfor-
mance and only Sokol and Flach [25] evaluate LIME as a
demonstration of their novel explainability taxonomy.
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Method Reference Scope Data Type Evaluation Technique

Activation maximization [15] Global Image -
Counterfactual [16], [17] Local Tabular, Image -
Feature importance [18], [19] Global,

Local
Image, Tabular -

Fisher kernels [20] Local Image Baseline evaluation:
Fisher kernels compared
to Influence functions

Frequency map [21] Local Tabular Baseline evaluation:
MACEM compared to LIME
User interview:
MACEM compared to LIME

if-then rules [22], [23] Global,
Local

Image, Tabular, Text -

Influence function [3] Local Image, Tabular, Text -
LIME [8], [24], [22], [25] Global,

Local
Image, Tabular, Text -

LIME extension [26], [27], [12],
[14], [28], [13]

Local Image, Tabular, Text Baseline evaluation: SUP-LIME
compared to K-LIME;
SLIME compared to
positive saliency map;
DLIME compared to LIME

MAPLE [10] Global,
Local

Tabular Baseline evaluation: MAPLE
compared to LIME

Model distillation [29] Global Tabular -
Parametric statistical tests [30] Local Tabular -
Partial dependence plot [31] Global,

Local
Tabular -

Prototype and criticism [32] Global,
Local

Tabular -

Ranking models [33] Local Text -
Relevance scores [34] Local Text Baseline evaluation: LRP

compared to TFIDF and uniform
Saliency map [35], [36], [37],

[38], [39], [40]
Local Tabular, Text, Image -

Sensitive analysis [41] Global,
Local

Tabular -

Shapley value [9], [19], [42],
[43], [44]

Local Tabular, Text, Image Baseline evaluation: true
shapley value, classical shapley
estimations, LIME and ES values
User interview: SHAP
compared to true shapley Value,
LIME and shapley sampling

Surrogate models [8], [45], [46] Global,
Local

Image, Tabular, Text -

Visualisation [19] Global,
Local

Tabular -

Table 1: Existing model agnostic explainablility approaches

Model agnostic frameworks have also been applied in
several domains. Within the medical sector, considering
that AI systems are used to support the diagnosis, both
Gale et al. [48] and Katuwal and Chen [24] identify the
need to enhance model comprehensibility for the profes-
sionals using them. In the case of Holzinger et al. 2019 [49]
they go beyond simply explaining the models, towards un-
covering causality. Within the field of news detection, the
automatic understanding or processing of text, xAI helps
to shed light on the multi-layer deep learning applications
used for advanced applications [34]. While, in the music
business, content analysis is supported by model agnos-

tic interpretability frameworks in order to gain a better
understanding of how certain tones are identified [13].

Although the LIME framework11, especially its image
explainer, is one of the predominant tools discussed in the
literature, its tabular explainer has received limited atten-
tion to date. In addition, existing work focuses primarily
on using LIME as a benchmark as opposed to assessing
the usability of LIME itself. In order to fill this gap in this
paper we apply LIME on tabular machine learning models
and evaluate LIMEs performance in terms of comparabil-

11https://github.com/marcotcr/lime
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ity, interpretability and usability.

3. Using machine learning to classify tabular data

We start by presenting four state of the art classification
models, namely decision tree [50], random forest [51], lo-
gistic regression [52] and XGBoost [53]. Following on from
this, we make use of conventional methods (i.e., the clas-
sification report [54] and receiver operating characteristic
curve [55]) to assess the model performance and identify
the best performing algorithm.

3.1. Tabular data pre-processing
For our tabular data analysis we use the Rain in Aus-

tralia data-set from Kaggle12. Before the algorithm is
trained, we work through the different variables step by
step to fully understand their meaning and make them
processable by our model. Given that RISK MM has a
100% correlation with the target variable, it is removed.
Other variables with too many missing values are also ex-
cluded. A summary of the full dataset is given in Table 2,
while the features we use for training are denoted with an
asterisk.

From a preprocessing perspective, we modify several
categorical variables, making them numeric so they can
be processed by the models. We further build a scikit
learn pipeline object, to apply the preprocessor on the
data and sequentially build our model based on its struc-
ture. This enables us to perform a sequence of different
transformations and to give each algorithm a customised
setting while being able to cross-validate each setting-
combination during the training process.

The scikit-learn train test split function is used to
break our data into different parts, namely training and
testing data. We assign 70% of our observation to the train-
ing dataset and the remaining 30% to the testing dataset.
Once the data is prepared, we train our four models with
the same training data. For comparability reasons, we
mainly used standard parameter settings for the setup of
the algorithms.

3.2. The application and interpretation of the machine learning
models

Our choice of algorithms (i.e., decision trees, random
forest, logistic regression and XGBoost) is based on the
different levels of interpretability they pose. While the
decision tree and the logistic regression are interpretable
on their own, the random forest and XGBoost, as examples
of ensemble methods, are black box models [8][56] that
require interpretation by a framework such as LIME.

In order to analyse the models performance on the
testing data, we utilise the sklearn classification report.

12https://www.kaggle.com/jsphyg/weather-dataset-rattle-
package

A model comparison using conventional methods is pre-
sented in Table 3. Precision, recall and f1-score are calculated
based on the classification results true positive, true neg-
ative, false positive and false negative. True positive and
true negative both indicate that the weather was correctly
predicted with either it is going to rain or it is not going
to rain, respectively. A false positive however indicates
a class that should not have been predicted positive and
false negative indicates that a class should have been pre-
dicted positive. The scores next to the metrics name in
Table 3 either refer to the target variable that it is not go-
ing to rain (0) or that it is going to rain (1) as well as the
weighted scores (w) and the training baseline value (tr)
for the receiver operating characteristic curves (ROC). Tak-
ing the decision tree as an example, the values are then
calculated as follows:

Accuracy: The accuracy gives an average of how often the
model classified the target variable correctly, in the
decision trees example in 79% of the time.

Precision: The precision describes how often the model
was correct in classifying an observation as positive,
and is therefore also known as the positive predictive
value. It is the result of the true positives, divided by
the sum of false positives and true positives, adding
up to 91% for the outcome that it is not going to rain
and 53% for the outcome that it is going to rain.

Recall: For the recall measurement, the performance of
the variables is more similar. It consists of the true
positives divided by the sum of true positives and
false negatives, 81% and 73%, respectively. A popu-
lar synonym for recall is the true positive rate.

F1-score: The f1-score tells us what percentage of positive
prediction is correct, including the recall and preci-
sion into its measurement. The f1-score consists of
two times the precision * recall divided by the sum
of precision and recall. The decision tree delivers a
f1-score of 86% for the outcome that it is not going to
rain and 61% for it is going to rain.

Macro score: The macro score represents the overall per-
formance of the indicator, meaning the average. The
macro precision reaches 82%, the macro recall 71% and
the macro f1-score 74%.

Weighted average score: The weighted average is the re-
spective score times its number of instances, for ex-
ample, the 0.85% weighted average precision result
from the target variable not going to rain, having
a score of 91% and 53% of target variable going to
rain, respectively.

Another state of the art tool to measure the validity
of classification results is the ROC curve [57]. Figure 1
displays one ROC curve per model, each graph showing
two curves, the upper one is the ROC curve, posing a
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variable name sample input type non-null-values
Date 2008-12-03 categorical 142193
Location Albury categorical 142193
MinTemp* 13.4 numerical 141556
MaxTemp* 25.1 numerical 141871
Rainfall* 0.00 numerical 140787
Evaporation 23 numerical 81350
Sunshine 11 numerical 74377
WindGustDir* W categorical 132863
WindGustSpeed* 44.0 numerical 132923
WindDir9am* NW categorical 132180
WindDir3pm* W categorical 138415
WindSpeed9am* 25.0 numerical 140845
WindSpeed3pm* 8.0 numerical 139563
Humidity9am* 25.0 numerical 140419
Humidity3pm* 22.0 numerical 138583
Pressure9am* 1007.7 numerical 128179
Pressure3pm* 1007.1 numerical 128212
Cloud9am 2.0 numerical 88536
Cloud3pm 8.0 numerical 85099
Temp9am* 16.9 numerical 141289
Temp3pm* 21.8 numerical 139467
RainToday* Yes categorical 140787
RISK MM 0.2 numerical 142193
RainTomorrow* No categorical 142193

Table 2: An overview of the datasets’ features (Variables used for the training of the models are marked with a *)

probability, the lower one is the baseline, which separates
the ROC and the area under the curve (AUC), which is
a measurement for separability. The ROC curve uses the
false positive rate, fall-out, and the true positive rate, re-
call, for its measurement. Due to its graphical display, the
curves of different models can be easily compared with
each other. Each point on the curve represents the relation
between fall-out and recall. The further to the upper left
corner the curve bends, the better the classification. The
AUC measures the general accuracy, meaning how well
a model can differentiate between classes. It provides an
aggregated measure of performance across all possible
classification thresholds, which makes it a quality indica-
tor for a model’s prediction regardless of what threshold
is chosen. For the AUC the following rule holds true: the
closer its value is to 1, the better the model is able to cor-
rectly classify. If the value is 0.5 it means that the model is
not better than randomly guessing and a value of close to
0 means that the model is doing the classification upside
down131415. For instance, in the case of our decision tree,
the baseline performs with 0.85 on our test-data and the
model can therefore be interpreted as reliable.

3.3. An assessment of the machine learning models
Overall it is notable that the performances of the deci-

sion tree, random forest and logistic regression are very
similar while the XGBoost performance differs signifi-
cantly. In this comparison, the XGBoost delivers the high-
est values with a 85% accuracy, weighted average scores of

13https://machinelearningmastery.com/roc-curves-and-precision-
recall-curves-for-classification-in-python/

14https://www.jstor.org/stable/2531595?seq=1
15https://developers.google.com/machine-learning/crash-

course/classification/roc-and-auc

85% precision, 85% recall as well as 84% f1-score. But it’s
weak performance in classifying that it is going to rain
correctly, can be seen in a low recall (1) and f1-score (1)
score with 46% and 58%, respectively. It is worth noting
that the high difference in the recall scores for the respec-
tive target variable might be caused by unbalanced testing
data, which is something we would like to further explore
in future work. The logistic regression offers the highest
recall (1), in the case of 77% of the positive observations it
predicts correctly that it is going to rain, with a weighted
recall of 79%. In terms of f1-score (1) the logistic regres-
sion and the random forest score equal 62% which is four
percent higher than the XGBoost with 58%. Furthermore,
comparing the ROC curves shows a similar performance
for all models, with XGBoost scoring 88% ROC baseline,
the logistic regression 87%, the random forest 86% and
the decision tree 85%, indicating, that all four models are
reasonably reliable when it comes to classifying instances
correctly.

To summarize, the decision tree performs worst in all
metrics. The random forest and the logistic regression
never differ more than two percent in any of the metrics
and are therefore performing similarly. Although the XG-
Boost outperforms the others in several metrics, it scores
significantly lower when it comes to predicting the out-
come of a positive observation. Thus, in order to decide
which model should be deployed, based on this results,
requires a trade-off: a higher accuracy and more accurate
prediction of true negatives would stand in favor of the
XGBoost, while the need for a more accurate prediction of
true positives would stand in favor of the random forest or
the logistic regression. Furthermore, while the confusion
matrix and the ROC give us insight into how the models
perform, they do not reveal how the models reach a certain
decision.
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decision tree 0.79 0.91 0.53 0.81 0.73 0.86 0.61 0.83 0.79 0.80 0.85
random forest 0.80 0.92 0.53 0.81 0.75 0.86 0.62 0.83 0.80 0.81 0.86

logistic reg. 0.79 0.92 0.52 0.80 0.77 0.86 0.62 0.84 0.79 0.80 0.87
XGBoost 0.85 0.86 0.79 0.96 0.46 0.91 0.58 0.85 0.85 0.84 0.88

Table 3: A model comparison using conventional methods

(a) Decision Tree (b) Random Forest (c) Logistic Regression (d) XGB

Figure 1: The ROC curves of the models

4. Applying the LIME xAI framework to tabular data

In order to better understand the behaviour of our four
classification models we employ the Local Interpretable
Model-Agnostic Explanations (LIME) xAI framework. We
start by providing a short introduction to LIME and follow
on by applying LIME on our four tabular models and
describing the output. Finally, we conduct a quantitative
analysis of fifty aggregated LIME observations to further
compare performance on a global level.

4.1. A short introduction to LIME
LIME is an open source framework, published by

Ribeiro et al. in 2016 [8], which aims to shed light on
the decision-making process of machine learning models
and therewith establish trust in their usage. LIME is based
on the assumption that every model is linear on a local
scale. Therefore, it explains individual predictions by cre-
ating new, slightly altered data points around the real data
and then applies a local linear model on it. In addition,
LIME visualises the output, using coloured megapixels on
image data and bar charts for tabular and text.
LIME is an acronym for Local Interpretable Model-
Agnostic Explanations. Local means that the framework
analyses specific observations. It does not give a gen-
eral explanation as to why the model behaves in a certain
way, but rather explains how a specific observation is cate-
gorised. Interpretable means that the user should be able
to understand what a model does. Thus, in image classi-
fication it shows which part of the picture it considered
when it comes to predictions and when working with tab-
ular data it shows which features influence its decision.
Model-Agnostic means that it can be applied to any black-
box algorithm we know today or that we might develop in

Listing 1: The LIME tabular explainer

1 explainer = LimeTabularExplainer(

2 convert_to_lime_format(X_train,

categorical_names).

3 values,

4 mode="classification",

5 feature_names=X_train.columns.tolist(),

6 categorical_names=categorical_names,

7 categorical_features=categorical_names.keys(),

8 discretize_continuous=True,

9 random_state=42)

the future. If the model is a glassbox this is not taken into
consideration as LIME treats every model like a blackbox.
Explanations denote the output, which the LIME frame-
work produces. LIME has three core functionalities: the
image explainer interprets image classification models, the
text explainer provides insight into text based models16

and the tabular explainer assesses to what extent features
of a tabular dataset are considered when it comes to the
classification process17.

4.2. The application of the LIME Tabular Explainer
The main function that LIME offers is called the

explainer. As LIME is model agnostic, the explanation
happens exclusively on the data level, hence ignoring the

16https://www.tensorflow.org/lite/models/text classifica-
tion/overview

17https://towardsdatascience.com/pytorch-tabular-binary-
classification-a0368da5bb89
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process within the model. Therefore, the explainer ex-
plains predictions on tabular data by perturbing features
based on the statistical properties of the training data [58].
A highlevel overview of the LIME explainer is provided
below:

The convert to LIME function: Prior to being able to ex-
plain an observation, we need to convert the output
into a certain format, which we do by creating a list
of all possible categorical values per feature. Then,
we use the convert to lime format function [59]
adopted from Kevin Lemagnen’s Pycon presenta-
tion in 201918, as the one included in the LIME docu-
mentation only works with older versions of Python.
The function converts all existing string variables to
integers, such that they can be interpreted.

The explainer: The explainer itself is included in the
LIME library and displayed in Listing 1. We set
all parameters manually, as the explainer does not
possess any default values. First we call our now
formatted dataset and set the mode to classification,
then we give a list of all features in our dataset (line 3)
and with categorical names=categorical names

we specify which of the variables are categorical (line
4), Categorical features (line 5) lists the index of
all features with a categorical type and discretize -

continuous (line 6) is a mathematical function that
simply helps to produce a better output by convert-
ing continuous attributes to nominal attributes. The
final parameter, random state, brings consistency
into the function, otherwise it always picks a differ-
ent number whenever we reload the function.

Displaying one observation: We choose one observation
on which we apply the interpretability framework
and subsequently print the classification that each
model gives for this instance as well as the true la-
bel. We can now convert the output to the LIME
format, saving it in the observation variable before
defining a standard predict function. The custom -

predict proba function, is able to transform very
simple models but also more complex input. It
converts the data so that it is processible by the
LIMETabularExplainer, which we carry out for ev-
ery model we wish to interpret. After this we can ap-
ply the LIME framework on our classification mod-
els. To create a LIME output, we define the explana-
tion as explainer.explain instance and include
the observation we chose above, adding the lr -

predict proba and five features as this shows us
the factors considered the most influential on pre-
dicting the target variable.

18https://speakerdeck.com/klemag/pycon-2019-introduction-to-
model-interpretability-in-python

Running the code presents us with the first of the four
LIME outputs, displayed in Figure 2, consisting of four
parts: the prediction probabilities on the left side, the fea-
ture probabilities in the center, the feature-value table on
the right and the r-squared value on the bottom left. The
prediction probabilities graph shows the model’s decision
on that instance, meaning which outcome it predicts and
the corresponding probability. In our example it displays
the output of the logistic regression and predicts, that it is
not going to rain with 92% probability, represented by the
blue bar with the number 0 and that it is going to rain with
8%, represented by the orange bar with the number 1. The
feature probabilities graph gives insight into how much a
feature influences the given decision. For this observation
the variable Humidity3pm is the most influential factor and
supports the prediction, that it is not going to rain tomor-
row. The second most important feature is WindGustSpeed
which weights towards that it is going to rain tomorrow,
represented by the number 1. In this case, we display the
top five features in our output, but theoretically all the
features could be listed that way, ordered by their impor-
tance. The last graph is the feature-value table, which also
sorts the features by importance, but instead of showing
their weight, is given the actual value that this feature pos-
sesses in this observation. For example, the forth feature,
Temp3pm, shows 35.60 in this table, representing 35.60 de-
grees Celsius, the temperature at 3pm of the day of the
observation. It is coloured orange, as it is influencing the
model’s decision towards rain. The r-squared indicates
how well the model fits the observed data and can take
a value between 0 and 1, with 1 constituting a perfect fit.
For this instance, the value of 0.50 indicates a moderate fit.
As demonstrated in Figure 2, LIME does not differentiate
between the machine learning model used but displays
each of them the same way.

4.3. Evaluating the models on a global level
In order to analyse the LIME output on a global level,

we apply the framework on fifty observations. For this
we adopt a simple random sampling methodology [60],
which is applied by utilizing a random selection function.
We then aggregate the output in an excel file to compare
the graphs with each other. As we analyse four models,
we end up with 200 interpretations in total. Our simple
random baseline approach, could be enhanced with more
sophisticated sampling mechanisms, such as Submodular
Pick LIME (SP-LIME), which can be used to select a diverse
yet representative set of explanations.

LIME allows us to look at individual features in more
detail and evaluate their influence, the occurrences of the
three most relevant features are summarized in table Ta-
ble 4. In our analysis the framework displays the top
five features per observation resulting in 200 total feature
counts and 50 top positions per model. Out of this set, Hu-
midity3pm occurs most frequently, except for the XGBoost
where it is ranked second after Pressure9am. It appears 50
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Figure 2: LIME output of the same observation from the (A) Logistic Regression, (B) Decision Tree, (C) Random Forest and (D) XGBoost

times in the analysis of the decision tree and logistic re-
gression, 42 times at the random forest and 48 times at the
XGBoost. Furthermore, Humidity3pm is not only the most
frequent, but is also considered the most important fea-
ture, as for the logistic regression it is the most influential
feature, meaning it is ranked number one, in all 50 cases
and for the decision tree in 42 cases. In case of the random
forest, its prediction that it is not going to rain is heavily
influenced by Rainfall, as whenever it did not rain, it
is ranked in first or second position, which happens in
22 and 11 cases, respectively. Nevertheless, Humidity3pm
is also important for the random forest and occurs in 21
cases on the first rank. In the XGBoost classification Humid-
ity3pm is considered the most important feature 38 times.
The least considered features are WindGustDir, RainToday
and Temp9am, with an occurrence of five, seven and eight
times, respectively, none of which are ever ranked within
the first or second position. Considering this values, we
now know that Humidity3pm is highly predictive for our
models, bringing us a step closer to developing a usable

application.
By displaying the intervals of its classification, LIME

enables us to evaluate the accuracy of a single prediction.
In terms of a false assessment we calculate the absolute
difference between the probabilities assigned to the tar-
get variables, measured in percent. This tells us by how
much the prediction is wrong and results in another in-
dicator to assess the models. The false classifications are
divided into two categories: a wrong prediction with less
than 20 percent of absolute difference is called a close miss
and a prediction with 20 percent or over more absolute
difference is called a far miss. The results are displayed
in Table 5. The analysis of all observations results in the
following: the decision tree classifies 12 out of 50 instances
incorrectly, which are split evenly between close and far
misses. The average absolute difference of all wrong classi-
fications is 23 percent. In terms of the amount of incorrect
classifications the logistic regression performs better than
the decision tree, with eight wrong classifications, of which
five are a close and three are a far miss. In absolute differ-
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Feature Decision Tree Random Forest Logistic Regression XGBoost
O TP O TP O TP O TP

Humidity3pm 50 42 42 21 50 50 42 38
Pressure9am 50 4 37 2 20 0 48 5
WindGustSpeed 50 4 29 4 44 11 34 4

Table 4: Summary of the most occurring (O) and highest rated (TP) features

Type Decision Tree Random Forest Logistic Regression XGBoost

Num. of close Misses (¡ 20%) 6 6 5 1
Num. of far Misses (≥ 20%) 6 3 3 3
Average (in %) 23 15 26 38

Table 5: Summary of close and far misses

ence the logistic regression performs slightly worse, with
around 26 percent. The random forest misclassifies nine
times, of which six are close and three are far misses and
gives us an average of 15 percent. Lastly, the XGBoost
predicts incorrectly only four times, one time causing a
close miss and three times a far miss, resulting in around
38 percent absolute difference, which is significantly lower
in the times of incorrect classifications, but when it fails
than by a lot more than other models.

Considering the different evaluations we conducted,
XGBoost is superior in the majority of cases. With the high-
est accuracy of 85%, weighted classification report scores
of 85% precision, 85% recall, 84% f1-score, a ROC-test-baseline
of 88% and the least amount of incorrect classifications, it
delivers a better performance than the other models.

5. Evaluating LIME from a usability perspective

After applying LIME on four machine learning models,
and testing its local and global functions, we evaluate its
usability. This usability assessment consists of two parts:
firstly, we perform interviews to get an impression of how
LIME is interpreted by people who are not familiar with
the concept of explainable AI; secondly, we use a user
experience evaluation framework in order to perform a
self assessment of LIME’s usability based on its criteria.

5.1. The interviews
We interviewed twelve people, equally split between

male and female, six with prior knowledge of machine
learning, classification models and data modelling, and
six with no prior knowledge in these fields. None of them
were familiar with the concept of xAI before participating
in the interview. The participants were either academics
or in the process of pursuing a degree and were chosen for
the usability assessment based on the mentioned charac-
teristics. In each interview we wanted to find out how in-
terpretable the LIME output is for a person who has never
worked with xAI before. The interviews, which lasted
between fifteen and twenty-five minutes, were conducted

using the standardised question-catalogue discussed in de-
tail below. An overview of the interview results discussed
herein is displayed in Table 6, while the set of anonymous
interview notes can in turn be found in our GitHub repos-
itory19.

The interview was split into two sections, both of
which started with an explanation from the interviewer. In
the first part the interviewees were given a quick introduc-
tion into rain prediction, as well as a quick introduction
into the applicable machine learning methods. They were
subsequently shown the first LIMETabularExplainer out-
put graph (cf., Figure 3) and were asked the following four
questions.

What do you see in this graph? All interviewees ex-
pressed uncertainty about what the illustrations
show. All started with identifying the three graphs
and tried to make sense of the different numbers.
Although a few participants struggled with the
prediction-probabilities and the feature-value graph,
every participant had difficulties interpreting the
feature probabilities as the numbers did not seem to
add up and there was too much information given
in a badly structured way.

Which feature influences the prediction and how? People
without prior machine learning knowledge strug-
gled to see the relation between the prediction prob-
abilities and the classification, but those with prior
knowledge in machine learning concluded, that
there is a connection between the feature probabil-
ities and the prediction probabilities graph. Five
concluded correctly, that the second smaller num-
bers on the central graph are probabilities, as they
are between 0 and 1 and influence the predictability.

Do you know why the model made this prediction? Five
out of twelve answered correctly, that the classifi-
cation is determined by the numbers of the feature
probabilities graph.

19https://github.com/jdieber/WhyModelWhy
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Participant Prior
knowledge Gender Understood

illustration
Understood
prediction

Rating
part I

Understanding
part II

Rating
part II

1 yes m yes yes 3 improved 8
2 no f no no 3 improved 6.5
3 no m no no 4 improved 7.5
4 yes m yes yes 5 improved 9.5
5 no f no no 4 improved 7.5
6 yes f no no 3 improved 7
7 yes f yes yes 8 improved 10
8 yes m yes yes 7 decreased 4
9 yes m no no 5 improved 9
10 no f no no 3 improved 5
11 no m yes yes 4 improved 8
12 no f no no 1 improved 3

Table 6: Summary of the participants’ understanding of the LIME output (ratings on a scale from 1-10, increasing)

Figure 3: Example of the interview LIME output

How well can you interpret the results of the prediction of
the graph, on an increasing scale from 1-10? The in-
terpretability of the LIME output was rated with an
average of 4.16. The rating between the subgroups
differed significantly, as the participants without
prior knowledge gave an average of 3.16 and the
participants with prior knowledge 5.16, respectively.

The second section started with a short explanation of each
graph of the LIME output as well as an explanation of the
meaning of the r-squared value at the bottom of the output.
The participants were subsequently shown another LIME
output and were asked four more questions.

What do you see in the second graph? After the partici-
pants were given the explanation for each graph the
answers improved significantly. Seven understood
the graphs correctly, but were still uncertain where
the probabilities of the prediction probabilities graph
came from. Four of the participants with a machine
learning background and one without understood
the framework after the explanation. Another six
pointed out that the r-squared scores of both mod-
els were low, which resulted in concerns about the
reliability of the prediction.

How well can you interpret the results of the prediction,

on an increasing scale from 1-10? Even though sev-
eral remarks were made in the previous question
the interpretability of the graph after the explana-
tion improved significantly, to an average of 7.08.
Participants with prior machine learning knowledge
again rated it slightly higher with an average of 7.91,
compared to an average of 6.25 by the participants
without prior knowledge.

What differences do you see between this one and the
other graph? All participants noted the different pre-
diction probabilities. Some participants pointed out
that there is a big difference on how the features in
the different outputs were rated and that the num-
bers of the feature value graph had changed.

Is there anything that stands out as strange or unusual?
Additionally, nine out of twelve participants stated
that the central graph was not very interpretable and
four mentioned that they found the choice of colours
disturbing. Furthermore, six interviewees suggested
a legend, titles or a short explanation should be in-
cluded in the output visualisation to improve its
interpretability.

To sum up, the results produced by the framework
are difficult to understand without documentation and/or
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explanation. Although the participants with a background
in machine learning were more effective in terms of in-
terpreting the explanation produced by LIME, usability
assessments such as the one described in this paper could
be used to significantly improve the user experience.

5.2. Self assessment of the usability
To assess LIME’s user experience more broadly, we

adopt the definition of usability proposed by the Inter-
national Organisation for Standardisation (ISO)20 in their
ISO 9241-11:2018 report [61]. Therein, usability is defined
as the ”extent to which a system, product or service can be used
by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use” [61]. As
this definition is too broad to be directly applied in our
evaluation context, we improve its applicability by taking
into consideration the ”New ISO Standards for Usability, Us-
ability Reports and Usability Measures” produced by Bevan
et al. [62] and the ”Usability Meanings and Interpretations in
ISO Standards” guidelines provided by Abran et al. Abran
et al. [63]. Combined they constitute our custom made
assessment framework, called Model Usability Evaluation
(MUsE).

5.2.1. How effective is LIME in terms of achieving model inter-
pretability?

In terms of effectiveness, Bevan et al. [62] state that
”effectiveness has been associated with completing a task com-
pletely and accurately, but it is also important to take account
of the potential negative consequences if the task is not achieved
correctly”. From this we extract three effectiveness factors:
measure of completion; measure of accuracy; and negative
consequences to rate effectiveness. Abran et al. [63] take
a more holistic perspective questioning ”how well do users
achieve their goal using the system?”. Thus, we use both the
standard and the guidelines in order to develop four UX
effectiveness questions tailored specifically to LIME, and
subsequently use them to perform our assessment:

(a) How complete is the explanation on a local level?
LIME is a local explainability framework, therefore
it calculates the influence of every feature and its
importance on a local level (i.e., this is done for each
prediction). Nevertheless, the connection between
the prediction probabilities and the feature proba-
bility graph is incomplete as currently only the fea-
ture importance score is shown. Additionally, these
scores do not add up to the prediction probabilities.
As displayed in Figure 3, the feature Humidity3pm
with a feature probabilities score of 0.31 alone ex-
ceeds the total prediction probability of 0.21 that it
is going to rain, while the overall classification was
in favor of no rain. This can only be explained by
assuming that the displayed prediction probabilities

20https://www.iso.org/home.html

are not the sum of the feature probabilities, but the
result of another calculation not obvious to a user.

(b) How complete is the explanation on a global level?
While LIME is generally used for local interpretabil-
ity, in this paper we also assess its performance
on a global level. It is not surprising that the
LIMETabularExplainer is less effective globally, as
it does not include a function or interface to allow
a global evaluation. Thus, we extract several ob-
servation outputs manually and analyse them in an
Excel file, as we did in the global analysis of Section 5.
Considering the importance of global interpretability
and the effectiveness of the simple proof of concept
presented in this paper, it would be beneficial to: (i)
implement performance indicators that allow for a
global comparison with other models; and/or (ii)
add a function to extract the local outputs of sev-
eral random observations as a spreadsheet, so the
user can calculate indicators necessary for a global
comparison themselves.

(c) Could accurate results be misinterpreted? The inter-
pretations of the local predictions appear to be accu-
rate. But we see a risk of misinterpretation when it
comes to the tabular explainer, as no comprehensive
explanation of it has been published yet [58]. There-
fore, we have to rely on third party explanations like
online articles21 22 or talks on YouTube2324. Ideally
such guidance should be incorporated into the LIME
documentation.

(d) What negative consequences arise from a misinterpre-
tation? In case of a misinterpretation of the LIME
evaluation the severity of the negative consequences
depends on the use-case. For example the implica-
tion of the predictions produced by our rain predic-
tion model for Australia and an automated defense
system [64] differ greatly. In our case a mistake in
the interpretation could lead to a faulty feature im-
portance and therefore a wrong rain forecast. In the
automated defense system case an incorrect classifi-
cation could put lives at risk. As the severity of the
consequences is not determined by the developers of
LIME but rather lies in the hands of the users, reduc-
ing the risk that a misinterpretation occurs should
be one of the key evaluation criteria when it comes
to usability assessments.

21https://medium.com/analytics-vidhya/explain-your-model-
with-lime-5a1a5867b423

22https://www.oreilly.com/content/introduction-to-local-
interpretable-model-agnostic-explanations-lime/

23https://www.youtube.com/watch?v=CY3t11vuuOM
24https://www.youtube.com/watch?v=C80SQe16Rao
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5.2.2. What resources are consumed in order to achieve inter-
pretability?

In order to evaluate resource efficiency Bevan et al. [62]
identify the following factors: task time, time efficiency,
cost-effectiveness, productive time ratio, unnecessary ac-
tions and fatigue. We aggregate them to a list with mutu-
ally exclusive components and conclude with the question
raised by Abran et al. ”What resources are consumed in order
to achieve the goal?” [63].

(a) How much time does it take to use LIME? Both, the
time to set up LIME as well as the time to analyse the
output play a role in this context. The setup works
well, however the official LIMETabularExplainer
setup documentation relates to several old pack-
ages25. Therefore, the initial process of applying the
original notebook and trying to find workarounds
consumed a lot of time. Additionally, the analysis
of the LIME output took a considerable amount of
time, as the documentation of the graphs is non-
transparent as stated in the effectiveness evaluation.
On the up-side, the time it takes to compute and
display an observation is minimal.

(b) What other costs are involved? As LIME is an open
source tool, no licensing costs are involved and also
the publications, documents and videos to under-
stand the tool (where available) are can be freely
accessed.

(c) Does this process cause fatigue? Applying LIME to
only a few observations can be performed quickly
and therefore is not costly from a performance per-
spective. However, the global interpretation was
a tedious process, which entailed hours of repeti-
tive manual work copying and pasting LIME output
from the notebook into an Excel file. Also, given that
there is no benchmark on the number of observations
necessary to evaluate the models globally it is not
clear how many outputs are necessary/sufficient.

5.2.3. How satisfying is the application of LIME?
Satisfaction is the least standardised of the three pa-

rameters as it is highly dependent on the user and use-case
[62]. Based on Bevan et al. satisfaction aims to take ”posi-
tive attitudes, emotions and/or comfort resulting from use of a
system, product or service” [62] into account. The question
Abran et al. raise to assess satisfaction is ”How well does the
user feel about the use of the system?” [63], which we include
in our analysis. Combining both ideas we come up with
the following assessment questions:

(a) Do we have a positive or negative attitude towards
the tool? At the start of the implementation our at-
titude was very positive, as LIME’s serves to help

25https://lime-ml.readthedocs.io/en/latest/lime.html

users to interpret and trust predictions performed by
blackbox algorithms. During the setup our attitude
deteriorated due to a lack of documentation and sup-
port, which posed an even bigger problem during
the analysis. LIME gives insight into a model’s pro-
cesses, but here again it takes a lot of effort to get a
clear understanding of the framework, which has a
negative influence on our attitude. Naturally, once
we learned how to apply and interpret LIME, the
process was a much more pleasant one.

(b) What emotions arise from using it? The lack of clear
and explicit guideline makes understanding LIME a
frustrating process. However, reaching the point of
a better overall understanding of our classification
models raises positive feelings. Especially LIME’s
short processing time makes it easy to evaluate sev-
eral instances in a row, which leads to a very pleasant
user experience.

(c) How satisfying is the final result? The output of the
LIMETabularExplainer unquestionably helps to un-
derstand the model’s classification process, as it of-
fers insights conventional methods can not provide,
which causes satisfaction. However, this satisfaction
could be increased by eliminating doubt about the re-
lationships between the local indicators and offering
a global analysis.

6. Conclusions

Motivated by the lack of limited evaluation of existing
post model interpretability tools, in this paper, we evalu-
ated the UX effectiveness of the LIME framework, via both
a usability study and a structured self assessment analysis.
In particular, we examined the performance of four state of
the art classification algorithms on a tabular dataset that is
used to predict rain; applied the LIMETabularExplainer

to analyse single observations on a local level; and used a
random sampling approach in order to evaluate the mod-
els on a global level. In order to assess the interpretability
of the output produced by LIME, we conducted interviews
with individuals who had no prior experience with LIME.
Whereas, in order to examine the usability of LIME, more
generally, we developed a usability assessment frame-
work, Model Usability Evaluation (MUsE), derived from
the ISO 9241-11:2018 standard.

Based on our analysis we conclude that LIME could be
further enhanced via self explanatory data visualisations,
better support for global interpretability, improved doc-
umentation, and contextualised accuracy and reliability
insights that limit the potential for negative consequences.
Additionally, we can conclude that the visualisations pro-
vided by LIME is more suitable for users who already have
experience working with classification algorithms. Indicat-
ing that post model interpretability tools need to consider
how best to present their findings to various stakeholder
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groups (i.e., developers, theorists, ethicists, and users).
Some initial insights with respect the the requirements
of the various stakeholders are provided by Preece et al.
[65] and Tomsett et al. [66]. Taking a broader perspective
on usability, there are a number of surveys that focus on
usability, from an analysis [67], a design [68], and an evalu-
ation perspective [69] that could provide be used to inform
post model interpretability tool enhancement.

When it comes to verification and validation, more gen-
erally, there is a need for additional metrics and method-
ologies that go beyond the baseline evaluations and user
interviews that are normally used to evaluate post model
interpretability tools. Here researchers have surveyed
tools and techniques that can be used to evaluate the ef-
fectiveness of machine learning applications [70], expert
systems [71], and cyber physical systems [72], to name but
a few, that could potentially be used to inform verification
and validation for xAI.

From an impact perspective, considering the lack of
formal metrics for assessing the effectiveness xAI propos-
als in general, MUsE, which has been derived from the ISO
9241-11:2018 standard and usability guidelines provided
by Bevan et al. [62] and Abran et al. [63], could serve as
a means to examine the usability of various post model
interpretability tools, and to compare them to one another.

In terms of future work, interviewing experienced
LIME users on their user experience with LIME would add
another valuable perspective to the usability study. Ad-
ditionally, an in-depth performance evaluation of LIMEs
tabular explainer could close a gap in current research. Be-
sides proposing strategies for improving the interpretabil-
ity of the output produced by LIME, and the usability of
the framework from a global level perspective, we are
interested in using MUsE to benchmark alternative model-
agnostic explanation frameworks.
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